Список тематических статей

Агрегатные и фазовые состояния полимеров

Физические состояния полимеров

Известны три основных агрегатных состояния веществ — твердое, жидкое и газообразное. В основу такой классификации положена способность тел сохранять свой объем и форму, а также способность сопротивляться воздействию внешних сил. Цепное строение и гибкость макромолекул ответственны за то, что полимеры могут находиться только в жидком или твердом агрегатном состоянии.  Газообразное состояние для них невозможно.

С термодинамической точки зрения различают фазовые состояния вещества. Обычно различают кристаллические, жидкие и газообразные фазы. Кристаллические фазы характеризуются дальним порядком в расположении атомов или молекул, образующих фазу, жидкие фазы — ближним порядком, а газообразные — отсутствием порядка в расположении атомов и молекул.

Для аморфного полимера различают три физических состояния — стеклообразное, высокоэластическое и вязкотекучее. Каждое физическое состояние характеризуется определенным комплексом деформационных свойств, знание которых очень важно как при переработке полимеров, так и при эксплуатации изделий из них, Из одного физического состояния в другое полимер переходит при изменении температуры. Изменение температуры влияет на запас тепловой энергии макромолекул (микроскопические свойства) и вызывает изменения в механических свойствах полимеров (макроскопические свойства).

Все три физических состояния высокомолекулярных линейных аморфных полимеров можно наблюдать, снимая термомеханическую кривую, показывающую деформации от температуры. Каждое физическое состояние имеет свою природу и особенности.

Аморфное состояние полимеров

Стеклообразное состояние аморфного полимера сравнивают обычно с состоянием переохлажденной жидкости, высокая вязкость которой исключает ее свободное течение и обеспечивает устойчивость формы, что свойственно как твердому телу. Стеклообразное состояние у низкомолекулярных веществ означает потерю подвижности всех молекул. Стеклообразное состояние у полимеров наблюдается тогда, когда их макромолекулы лишены подвижности. Этого можно достичь понижением температуры. Поскольку макромолекулы совершают движение не как единое целое, а сегментами (т.е. частями, и это отдаленно напоминает движение гусеницы), то для фиксации всей цени достаточно зафиксировать лишь часть сегментов, при этом другая часть на них может сохранять некоторую свободу перемещения. Это обстоятельство является одной из причин больших деформаций полимерных стекол, к которым приложены значительные усилия. При стекловании между макромолекулами не возникает новых типов связей, В затвердевшем полимере наблюдается ближний порядок, а расположении отдельных частей и атомных групп макромолекул.

Стеклообразный полимер (полимерное стекло) — это твердый хрупкий материал, в макромолекулах которого атомы или группы атомов совершают колебательные    движения около положения равновесия. Отсутствие подвижности значительной части сегментов цепи из-за высокой вязкости среды обусловливает невозможность конформационных переходов макромолекул. С повышением температуры тепловой энергии может оказаться достаточно, чтобы началось перемещение части сегменте и из одного положения в другое, Внешне это проявляется в том, что наблюдается постепенный переход от свойств твердого, хрупкою материала к свойствам более мягкого пластического тел д. Среднее значение некоторой области температур, в которой наступает сегментальная подвижность макромолекул, называют температурой стеклования Тс.

У линейных полимеров температура стеклования зависит от молекулярной массы, увеличиваясь с ее ростом, Когда же молекулярная масса полимера достигает значения, при котором начинает проявляться гибкость макромолекул, Тс принимает неизменное значение, У пространственных полимеров сшивание макромолекул и образование сетчатой структуры приводит к повышению Тс тем большему, чем гуще пространственная сетка.

Процесс стеклования сопровождается изменением многих свойств полимера - теплопроводности, электрической проводимости,   диэлектрической   проницаемости,   показателя   преломления.

При понижении температуры ниже Тс в полимере наблюдается дальнейшее уменьшение теплового движения тех сегментов макромолекул, которые до этого обладали некоторой подвижностью. Чтобы вызвать теперь даже небольшую деформацию застеклованного полимера, нужно приложить к нему большую механическую нагрузку. При этом действующее на полимер напряжение (нагрузка) может оказаться выше его разрушающего напряжения, и полимер разрушается как хрупкое тело при очень малой деформации. Температуру, при которой происходит хрупкое разрушение полимера, называют температурой хрупкости Тхр.

Высокоэластическое состояние полимера характеризуется относительно высокой подвижностью сегментов макромолекул. Это приводит к тому, что макромолекулы стремятся принять конформации, соответствующие различным положениям звеньев в пространстве. Наряду с двумя крайними конформациями — полностью выпрямленной и полностью свернутой — существует множество конформаций, обусловленных разной степенью свернутости макромолекул.

Высокоэластическое состояние проявляется только тогда, когда макромолекулы имеют значительную длину (большую молекулярную массу). Оно особенно свойственно гибкоцепным полимерам, и может проявляться для них уже при комнатной температуре. В случае значительного межмолекулярного взаимодействия высокоэластическое состояние наблюдается при повышенных температурах, то есть когда действие межмолекулярных сил ослабевает. Сравнительная легкость принятия макромолекулой самых различны конформаций под влиянием внешнего механического напряжения объясняет большие деформации в высокоэластическом состоянии (сотни процентов). После снятия нагрузки благодаря тепловому перемещению сегментов макромолекулы возвращаются к исходным кип формациям и деформации исчезает.

В высокоэластическом состоянии деформация носит обратимый характер потому, что время действия внешней механической нагрузки мало в сравнении с тем временем, которое требуется, чтобы макромолекула могла принять конформацию, равновесную для данных условий. Если процесс деформации линейного полимера осуществлять медленно, так, чтобы макромолекулы успели перейти из одной равновесной конформации в другую, вместо высокоэластического состояния полимер окажется в вязкотекучем состоянии.

Высокоэластическое состояние наблюдается в области температур Тс — Тт, где Тт — температура текучести полимера.

В вязкотекучем состоянии полимер представляет собой жидкость и способен необратимо течь под воздействием сравнительно небольших внешних напряжений, т.е. проявлять пластическую деформацию. При течении происходит перемещение целых макромолекул относительно друг друга. Деформация в вязкотекучем состоянии может развиваться бесконечно и носит необратимый характер.

Кристаллическое состояние полимеров

Многие полимеры могут существовать в кристаллическом фазовом состоянии. Так, полиэтилен, полипропилен, натуральный каучук, отдельные эфиры целлюлозы, полиамиды могут образовывать микроскопические кристаллы.

В кристаллическое состояние полимеры переходит из жидкого (расплав, раствор) при понижении температуры. Кристаллизация протекает п результате фиксации положения отдельных сегментов и возникновения элементов дальнего трехмерного порядка в их расположении.
 

Литература

1. Энциклопедия полимеров.. М., Советская энциклопедия. Т. 1, 1972, Т. 2, 1974, т. 3, 1977.
2. Бранцхин E. А., Шульгина Э. С., Технология пластических масс. М., Химия, 1974


Возврат к списку

Наши публикации в соцсетях: