Список тематических статей

Огнестойкость полимеров и полимерных материалов

Большинство промыш­ленных полимеров — органические вещества, которые при температуре 500 °С воспламеняются и горят (при тепловом импульсе более 0,85 кДж/м2 сгорает все). Горение осущест­вляется в результате воспламенения и горения газообразных продуктов термоокислитель­ного пиролиза и представляют собой непрерывный многостадийный процесс: 1) аккуму­ляция тепловой энергии от источника зажигания, 2) разложение полимера с выделением летучих продуктов пиролиза (в ряде случаев — рекомбинация твердых или жидких про­дуктов разложения в более устойчивые соединения — пиролизованные остатки, в том чис­ле карбонизованные, кокс), 3) воспламенение газообразных веществ, 4) горение газооб­разных веществ и кокса. Суммарная скорость процесса горения определяется наиболее медленной из перечисленных стадий.

Полимеры по своему поведению при горении так же, как и при нагревании в средах с различной концентрацией кислорода, подразделяются на две группы: деструктирующиеся с разрывом связей основной цепи и образованием низкомолекулярных газообразных и жидких продуктов и коксующиеся. Образующиеся низкомолекулярные газообразные и жидкие продукты пиролиза могут быть горючими и негорючими.

Возгорание горючих газообразных продуктов пиролиза происходит при достижении нижнего концентрационного предела воспламенения. Во многих случаях наблюдается разрушение материала и вынос в газовую фазу твердых частиц с горящей поверхности полимера.

Горючесть полимерных материалов, в основном, зависит от соотношения теплоты, выделяемой при сгорании продуктов пиролиза, и теплоты, необходимой для их образования и газификации.

Для снижения горючести полимеров используют: 1) замедление реакций в зоне пиролиза снижением скорости газификации полимера и количества образующихся горючих продуктов; 2) снижение тепло- и массообмена между пламенем и конденсированной фа­зой; 3) ингибирование радикалоцепных процессов в конденсированной фазе при ее на­греве и в пламени. Практически указанные направления реализуются путем использова­ния химически модифицированных полимеров, в том числе с минимальным содержанием водорода в структуре, термоустойчивых (типа полиариленов и полигетероариленов), пу­тем введения в состав полимерного материала минеральных наполнителей, антипиренов, нанесение огнезащитных покрытий, а также комбинацией этих методов.

Полимерные материалы подразделяются (по одной из многих классификаций) на негорючие, трудносгораемые и горючие. Критерием отнесения полимерного материала к группе негорючих является его неспособность гореть на воздухе при температуре среды 900–1100 °С.

Показателями, характеризующими горючесть полимерных материалов, являются, в зависимости от метода определения горючести, температура воспламенения, скорость горения, теплота сгорания, температура поверхности горящего материала и другие. Благодаря высокой воспроизводимости результатов наибольшего внимания заслуживает метод калориметрии и метод кислородного индекса.

Существует определенный разрыв между требованиями, предъявляемыми к горючести материалов, и требованиями, предъявляемыми к огнестойкости конструкций (изделий), изготовляемых из этих материалов. Материал может быть признан негорючим, а изделие из него — не огнестойкими из-за резкого снижения эксплуатационных свойств. Ог­нестойкость конструкций определяют как их способность выдерживать эксплуатационные нагрузки в условиях пожара в течение периода, называемого пре­делом огнестойкости.

Огнестойкость материалов, применяемых в конструкции, следует определять как свойство материалов сохранять основные эксплуатационные характеристики при действии огня в течение указанного периода. При оценке огнестойкости полимерного материа­ла, в отличие от его горючести, необходимо знать изменение прочностных, теплофизических и других свойств материала при горении с тем, чтобы иметь возможность оценить предел огнестойкости конструкции или изделия.

Классификация материалов по горючести весьма приблизительна, так как воспламенение и горение материалов зависит не только от химической природы полимера и поли­мерного материала на его основе, но и от температуры источника горения, условий вос­пламенения, наличия легкосгораемых материалов-соседей, формы и положения по отношению к пламени образца, формы изделия или конструкции и ряда других причин.

Согласно принятой в России классификации полимерные материалы делят на сгораемые, трудносгораемые и несгораемые. Из сгораемых материалов выделяют трудновоспламенямые, а из них и трудносгораемых — самозатухающие. Используемая за рубежом классификация материалов по огнестойкости приблизительно соответствует отечественной. Например, полимерные материалы, характеризуемые такими показателями, как огне- и пламесопротивляемость, огне- и пламеустойчивость, а также огне- и пламезамедление, близки к полимерным материалам, характеризуемым как трудносгораемые и трудновоспламеняемые.

Горючесть полимерного материала характеризуют по ряду показателей, которые можно объединить в четыре группы:

1) Кинетические — по скорости горения, скорости распространения пламени и т.д.;

2) Тепловые — по теплоте сгорания, показателям возгораемости и т.д.;

3) Температурные — по температурам воспламенения, самовоспламенения и т.д.;

4) Концентрационные — по содержанию необходимого для горения окислителя и горючего вещества, по кислородным индексам.

Аппаратурное оформление и методики определения показателей четырех групп, размеры образцов различны.

Отнесение материалов к той или иной группе возгораемости связано со скоростью воспламенения, устойчивостью и скоростью горения. Все это обусловлено характером горения полимера и полимерного материала.

Рассматривают пять пространственных зон горения:

1) слои, прилегающие к поверхностному слою, в которых протекает пиролиз при незначительной доле процессов окисления;

2) поверхностный слой, подвергающийся термоокислительной деструкции;

3) предпламенная зона, в которой низкомолекулярные продукты, образующиеся в первых двух зонах, смешиваются с нагретым воздухом, разлагаются и окисляются под действием кислорода и активных радикалов, диффундирующих из пламени;

4) зона пламени, с необходимой концентрацией продуктов разложения, где выделяет­ся основная часть тепловой энергии и наблюдается максимальная температура и световая энергия;

5) зона продуктов сгорания и догорания, где продукты реакции смешиваются с холодным воздухом, выделяющаяся тепловая энергия вместе с энергией из зоны пламени поступает к поврежденным участкам полимерного материала за счет конвекции и излучения.

Горение полимерных материалов делят также на четыре временных стадии, относящиеся к нагреву, деструкции, воспламенению и горению:

1) взаимодействие источника горения с материалом, степень и скорость которого зависят от теплопроводности полимерного материала, скрытой теплоты плавления полиме­ра или испарения продуктов его разложения и компонентов полимерного материала, их теплоемкости и от типа источника нагрева;

2) деструкция полимерного материала зависит от температуры и скорости подвода энергии от источника нагрева (горения), суммарной теплоты и условий горения и проходит с образованием жидких, твердых и газообразных продуктов (в первой и второй зонах), которые в последних трех зонах образуют горючие и негорючие газы и дым;

3) воспламенение характеризуется температурой воспламенения образовавшихся при деструкции продуктов, температурой отходящих газов, концентрациями горючих газов и окислителя, необходимыми для окисления и горения;

4) горение, развивающееся в том случае, если выделяется избыток тепловой энергии и достаточное количество ее поступает в зону деструкции и предпламенную зону и если в зоне горения имеется достаточная концентрация горючих веществ и окислителя.

Ряд физических и химических процессов способствует тому, что появляется пятая стадия догорания. Вследствие больших тепловых потерь скорость горения становится малой, и материал охлаждается раньше превращения в газообразные продукты сгорания. Усадка полимерного материала при горении и плавление полимера или компонентов полимерного материала может способствовать (при растрескивании) или препятствовать (при уменьшении объема образца при плавлении компонентов с высокой теплоемкостью) горению. Коксование обычно приводит к затуханию материала.

Сложность процесса горения, определяемая большим числом параметров, привела к использованию большого числа методик определения горючести полимеров и полимерных материалов.

Современный комплексный подход к проблеме потребовал разработки методов исследования процессов дымообразования при горении полимерных материалов и определения токсичности продуктов горения (FST-свойства).

Стандартизацией терминологии и методов испытаний, технических условий на материалы и продукцию в области полимеров, ПМ и ПКМ в системе ИСО (ISO — International Standard Organizations) занимается подкомитет №4 (поведение при горении) комитета ТК61 (Committee: ТС 61 Plastics), который к февралю 2002 года выпустил 488 стандартов ISO.

Для оценки огнестойкости материалов используется большое количество стандартов: UL94, ГОСТ 17088-71, 15898-70, ГОСТ 28157-89 (горючесть); ГОСТ 12.1.044-89, п.4.14 (кислородный индекс), п.4.18 (коэффициент дымообразования), п.4.19 (индекс распространения пламени), п.4.20 (токсичность продуктов горения); ASTM D 2863 (кислородный индекс, КИ, предельный кислородный индекс, ПКИ, limiting oxygen index, LOI); ISO 181-189; 4589-1,2,3; 5659-1,2; ISO/TR 5656-3; 10093, 11907-1,2,3,4; ГОСТ 24632-81 (огнестойкость и дымовыделение); ASTM D 22-29, MIL-M 14 (токсичность про­дуктов горения); ГОСТ Р 51032-97 (ISO /ПМС 9239.2, распространение пламени); ГОСТ 30244-94 (горючесть); ГОСТ 30402-96 (ISO 5657-86, воспламеняемость).

В России предприятия-изготовители изделий из полимерных материалов (например, стеклопластиков, используемых в строительстве, в конструкциях подвижного состава метрополитенов и железных дорог) сертифицируют свою продукцию на соответствие требованиям норм пожарной безопасности (отраслевые нормы НПБ-109, НПБ-244; ведомственные нормы ВНПБ-03), в соответствии с которыми производится отбор образцов и их испытания в специализированных испытательных центрах:

№ п/п

Наименование испытаний

Метод испытаний по ГОСТ

Количество образцов и их размеры

1

Определение группы горючести строительных материалов

ГОСТ 30244-94, («шахта») М.2

12 образцов; 1000 × 195 мм

2

Определение группы трудногорючих и горючих материалов с учетом их воспламеняемости

ГОСТ 12.1.044-89, п.4.3

5 образцов; 150 × 60 мм и толщиной не более 30 мм

3

Определение индекса распространения пламени

ГОСТ 12.1.044-89, п.4.19

6 образцов; 320 × 140 мм

4

Определение токсичности продуктов горения

ГОСТ 12.1.044-89, п.4.20

20 образцов; 40 × 40 мм и толщиной не более 10 мм

5

Определение дымообразующей способности материала

ГОСТ 12.1.044-89, п.4.18

15 образцов; 40 × 40 мм и толщиной не более 10 мм

6

Определение характеристики воспламенения строительных материалов

ГОСТ 30402-96

15 образцов; 165 × 165 мм и толщиной не более 70 мм

Методы исследования горения полимерных материалов и оценки их горючести и огнестойкости несовершенны, терминология запутанна. Большое многообразие методов с различным аппаратурным оформлением, каждый из которых позволяет характеризовать горючесть полимеров и полимерных материалов по несравнимым между собой кинетическим, тепловым, температурным, концентрационным параметрам, не дает возможность достаточно полно, а порой и достоверно, определить горючесть полимеров и полимерных материалов. Длительный процесс совершенствования методик измерения предельного ки­слородного индекса (ПКИ), который привел к созданию стандарта ASTM 2863-70, затем ISO, LOI, делают ПКИ одной из наиболее полезных характеристик, используемых при оценке горючести полимерных материалов. Простота методики и воспроизводимость результатов позволили расположить полимерные материалы в последовательность от легкогорючих, например, полиацетали с ПКИ 14,3, до наиболее инертных, как политетрафторэтилен с ПКИ 99. Но попытки установить корреляцию между ПКИ материала и поведением этого же материала при обычном пожаре привели лишь к заключению, что ПКИ не является единственным критерием, определяющим пожароопасность материала. Например, введение в полимер различных огнегасящих добавок может давать полимерные материалы с одинаковыми ПКИ, но с совершенно разным поведением в условиях пожара.

Кроме того, представляется затруднительным коррелировать горючесть полимерных материалов, полученную при различных концентрациях кислорода в окружающей среде, с поведением материалов при одной и той же концентрации кислорода, но иной температуре. До некоторой степени разрешением этих противоречий могут служить результаты, по­лучаемые из изучения температурных зависимостей ПКИ. В таком случае параметром оценки может стать температура, при которой ПКИ достигает величины 20,8%, т.е. соответствует содержанию кислорода в воздухе. Это исключает определенную искусствен­ность значений ПКИ при комнатной температуре, но вызывает появление иных затрудне­ний, касающихся скорости нагревания и термической стабильности образца.


Возврат к списку

Наши публикации в соцсетях: