Создан новый нанокомпозитный материал напоминающий перламутр
Учёные создали новый конструкционный композитный материал на основе оксида алюминия, помещенного в полимерную матрицу. Исследователи научились получать Al2O3 в форме микроскопических пластинок, которые и являются основой инновации. Работа ученых опубликована в Science.
Изобретение сотрудников швейцарского Федерального технологического института в Цюрихе в будущем сможет быть применено в изготовлении зубных и костных имплантатов, а также стать прототипом конструкционного материала для машиностроительной индустрии. Главными достоинствами композита являются его необычайная прочность и эластичность, а также небольшой вес.
Новое достижение швейцарских ученых под руководством профессора Людвига Гауклера перекрывает успехи исследователей из Массачусетского технологического института, до сих пор являвшиеся наиболее удачным примером биомиметического подхода в материаловедении. Материал, полученный в Цюрихе, впятеро прочнее и обладает выраженной пластичностью, прочность плёнки композита эквивалентна прочности алюминиевой фольги той же толщины. При этом материал выдерживает 25-процентную деформацию, в то время как алюминий рвется уже при двухпроцентной.
В то же время материаловедам удалось сохранить необыкновенную легкость композита: по оценкам Андре Стюарта, материаловеда из Гарварда, также задействованного в работе, гибрид может быть вчетверо легче стали, обладающей соответствующими прочностными характеристиками. Это свойство материала пророчит ему большое будущее в машиностроении, где в настоящее время в изготовлении неметаллических деталей применяется не самое легкое стекловолокно. Кроме того, выгодным отличием нового материала от стекловолокна является меньшая анизотропия свойств. Так, стекловолокно сохраняет свою прочность только вдоль одного направления, совпадающего с направленностью волокон. Пластинчатая же структура материала из оксида алюминия обеспечивает его прочность в двух направлениях.
Для того чтобы получить тонкую пленку нового композитного материала, ученые применили метод наслоения. Первоначально приготовив дисперсию керамических пластинок оксида алюминия в этиловом спирте, они поместили ее на поверхности более плотной жидкости – воды. Таким образом был сформирован одиночный слой пластинок на поверхности воды, который был перенесен на подложку из стекла простым погружением последнего в воду. В качестве связующего полимера был использован биосовместимый хитозан, известный в том числе и многим почитателям биологических добавок.
Прототипом разработки для учёных оказался перламутр, образующийся в виде тонкой пленки на поверхности морских раковин. К чести создателей, они не только стремились повторить его структуру, но и улучшить ее. Ракушки используют карбонат кальция для создания пленки перламутра, который распределяют в виде пластин в толще белкового полимера. При этом ключевую роль играет соотношение длины и толщины пластинок, которое и позволяет достичь уникального сочетания пластичности и прочности, до этого воспроизведенного людьми только в металлах и сплавах.
Слишком большое соотношение длины и толщины приводит к преждевременному разрушению материала при приложении нагрузки. Если же соотношение слишком мало, материал становится непрочным.
Исследователи отдали предпочтение оксиду алюминия, так как последний отличается впятеро большей прочностью по сравнению с карбонатом кальция. Кроме того, ученые использовали пластинки меньшей толщины, чем те, что были обнаружены в перламутровом покрытии: двести нанометров против пятисот. Эта мера позволила уменьшить риск возникновения пустот и трещин в конечном продукте послойного синтеза. Теоретические расчеты показали, что соотношение между длиной и толщиной пластинок, равное сорока, приводит к наилучшим механическим характеристикам композитного материала. Таким образом, длина их составила от 5 до 10 микрон. В итоге ученые получили большую прочность материала при меньшей концентрации пластинок в нем. Это позволило использовать большие количества полимера, что вылилось в превосходную пластичность.
Несмотря на это, перед внедрением в зубопротезную промышленность, не говоря уже о костной имплантации и тяжелой индустрии, ученым предстоит разработать более технологичный и быстрый метод получения композита.
Сам Гауклер полагает, что поле для усовершенствований материала еще очень широко. Например, необходимо провести поиск иного полимерного связующего, которое может еще более повысить прочность материала и сделать его дешевле. Кроме того, в увеличении нуждается и адгезия («прилипучесть») полимера к пластинкам Al2O3.
В то же время успех швейцарцев – еще одна знаковая веха в развитии биомиметических подходов, не так давно позволивших химикам создать инновационные адгезионные материалы на основе строения лапок ящериц и древесных лягушек.