Список тематических статей

ПОЛИМОРФИЗМ

от греч. polymorphos-многообразный), способность твердых в-в и жидких кристаллов существовать в двух или неск. формах с разл. кристаллич. структурой и св-вами при одном и том же хим. составе. Такие формы наз. полиморфными модификациями. Взаимные превращения полиморфных модификаций наз. полиморфными переходами. П. простых в-в принято называть аллотропией, но понятие П. не относят к некристаллич. аллотропным формам (таким, как газообразные О2 и О3). П. широко распространен в самых разнообразных классах в-в. Типичный пример полиморфных форм - модификации углерода: алмаз и лонсдейлит, в к-рых атомы объединены ковалентными связями в пространств. каркас; графит, в структуре к-рого имеются слои наиб. прочно связанных атомов; карбин, построенный из бесконечных линейных цепочек. Эти модификации резко различаются по св-вам. В случае молекулярных кристаллов (в частности, орг. в-в) П. проявляется в разл. упаковке молекул, имеющих одинаковую структурную ф-лу; здесь переход от одной модификации к другой осуществляется без разрыва ковалентных связей, но конформация молекул может существенно меняться (конформационный П.).

Известны также полиморфные модификации, отличающиеся степенью упорядоченности. Напр., в кристаллич. структуре высокотемпературной формы бензотиофена (существующей выше -11 °С) молекулы статистически ориентированы четырьмя разл. способами, в то время как в структуре низкотемпературной формы все молекулы ориентированы одним определенным образом. Особый вид П. связан со своб. вращением молекул или атомных группировок. Так, в кристаллах NH4NO3 при 84°С происходит полиморфный переход, обусловленный возникновением вращения ионов вокруг оси третьего порядка; в интервале от 125°С до т-ры плавления ионы и вращаются вокруг центров масс, эффективно приобретая сферич. форму.

Частный случай П.-политипизм (политипия). Политип-ные модификации представляют собой разл. варианты наложения одинаковых двухмерных структурных фрагментов; при этом два параметра решетки неизменны, а третий меняется, оставаясь кратным постоянной величине. Напр., для SiC известно более 40 политипных модификаций (политипов). Политипия наблюдается также у ZnS, CdI2, глинистых минералов и др.

С точки зрения термодинамики, полиморфные модификации обычно являются фазами, причем различают два типа П. Если каждая из двух модификаций устойчива в определенном интервале т-р и давлений, эти фазы наз. энантио-тропными. В принципе одна энантиотропная фаза должна переходить в другую при вполне определенных условиях, и переход должен осуществляться в любом направлении. Однако энантиотропные превращения м. б. настолько кинетически заторможены, что метастабильная модификация существует неограниченно долго. Напр., алмаз и мн. др. минералы метастабильны при атм. давлении и комнатной т-ре. Вместе с тем, нек-рые полиморфные переходы протекают настолько быстро, что можно визуально наблюдать растрескивание кристалла или движение границы раздела фаз.

Если одна из двух модификаций термодинамически неустойчива при всех т-рах ниже точки плавления, эти две модификации наз. монотропными (напр., модификации пропилбензола). В этом случае осуществим только односторонний переход метастабильной модификации в стабильную. Метастабильную фазу можно получить только из переохлажденной жидкости (или пара). При энантиотропии каждой из двух модификаций соответствует определенная область на диаграмме состояния; при монотропии такая область имеется лишь для устойчивой модификации. Интерпретация таких диаграмм состояния осуществляется с помощью кривых зависимости своб. энергии F от т-ры при постоянном давлении. Поскольку при любой т-ре устойчива фаза с миним. своб. энергией, в случаях, показанных на рис. а и б, модификации I и II соотв. энантиотропны и монотропны (точки пересечения кривых отвечают равновесию модификаций между собой и с жидкой фазой).

Зависимость свободной энергии от т-ры для жидкости и полиморфных модификаций: а - модификации I и II энантиотропны, б-модификаиии I и II монотропны; ж-жидкость.

Полиморфные переходы, согласно принятой в термодинамике классификации, подразделяются на переходы I и II рода. Последние (в отличие от переходов первого рода) не сопровождаются скачкообразным изменением энтропии; теплоемкость в точке такого перехода проходит через высокий и острый максимум. Изменение кристаллич. структуры при переходе второго рода невелико, а в нек-рых случаях практически отсутствует (напр., при переходе a-Fe в b-Fe, происходящем при 769°С, теряются ферромагн. св-ва). Переходами второго рода часто являются переходы типа порядок - беспорядок, переходы с появлением внутр. вращения (напр., в случае NH4NO3).

П. открыл М. Клапрот в 1798, он обнаружил, что минералы кальцит и арагонит имеют одинаковый хим. состав-СаСО3. Затем это явление было изучено Э. Митчерлихом (1822) на кристаллах арсенатов, фосфатов и серы.

Лит.: Физика и химия твердого состояния органических соединений, пер. с англ., М., 1967; Проблемы физики и химии твердого состояния органических соединений, пер. с англ., М., 1968; Верма А., Рам Кришна П., Полиморфизм и политипизм в кристаллах, пер. с англ., М., 1969; Бок и и Г. Б., Кристаллохимия, 3 изд., М., 1971; Изюмов Ю. А., Сыромятников В. Н., Фазовые переходы и симметрия кристаллов, М., 1984. П. М. Зоркий


Возврат к списку

Наши публикации в соцсетях: