Список тематических статей

ПОЛИАЦЕТИЛЕН

 [—CH=CH-]n или (CH)n, полимер ацетилена. Твердый реактопласт; в зависимости от метода получения - черный порошок, сероватый пористый материал, серебристые или золотистые пленки; плотн. 0,04-1,1 г/см , степень кристалличности 0-95%. Известны цис- и транс-формы П.; цис-форма при нагр. до 100-1500C переходит в транс-форму. П. не раств. ни в одном из известных орг. р-рителей.

Электрофиз. и хим. св-ва зависят от метода получения и морфологии П. Наиб. подробно изучены пленки. Последние (П. цис-формы)могут вытягиваться под нагрузкой 15-20 МПа (макс. удлинение в 8 раз). П.-полупроводник (уд. электропроводность 10-7 и 10-3 Ом-1·м-1 соотв. для цис- и транс-форм). Электронная структура транс-формы П. характеризуется наличием неспаренных электронов, что объясняется нарушением чередования одинарных и двойных связей в цепи. Подвижность таких дефектов определяет большинство электрофиз. характеристик П.

Допирование П. (введение небольших кол-в примесей) осуществляется при его взаимод. с сильными донорами или акцепторами электронов. В результате изменяется структура П. и его электропроводность приближается к электропроводности металла (см. Металлы органические, а также Поливинилены).

Применяют в основном хим. и электрохим. методы допирования. По первому из них пленки П. обычно обрабатывают парами допирующего агента или погружают в его р-р. Допирующими агентами служат щелочные металлы, галогены, к-ты Льюиса. По второму методу через р-ры солей пропускают постоянный электрич. ток, используя в качестве электродов пленки П. В обоих случаях протекают окислит.-восстановит. р-ции.

Электрохим. ячейки с электродами из пленок П. обладают большой электрохим. емкостью и плотностью тока. Напр., для ячейки П. - Li с электролитом LiClO4 в пропиленкарбо-нате электрохим. емкость в пересчете на полимерный электрод составляет 250 (Вт · ч)/кг, плотн. тока 50-200 мА/см2.

Параметры кристаллич. структуры допированного П. зависят от типа допирующего агента, но в большинстве случаев они близки соед. включения графита. Электропроводность допированного П. также зависит от типа допирующего агента и увеличивается с глубиной допирования. Макс. электропроводность, равная 1,5· 107-1м-1, получена у П., допированного I2.

Получают П. полимеризацией ацетилена или полимерана-логичными превращ. из насыщ. полимеров. Осн. методы: 1) пропускание ацетилена над р-ром катализатора Al(C2H5)3-Ti(OC4H9)4 в орг. р-рителе (напр., гептан, толуол) при т-рах от -800C до 1800C. П. формируется на пов-сти р-ра в виде пленки, состоящей из фибрилл диаметром 20-50 нм; плотн. 0,4-0,7 г/см3.

2) Пропускание ацетилена в р-р катализатора Со (NO 3)2-NaBH4 в C2H5OH при т-рах от -700C до -400C. П. образуется в виде геля или суспензии, из к-рых можно формовать пленки поливом, напылением, фильтрованием и др. способами. Пленки состоят из фибрилл, близких по структуре к полученным по первому методу; плотн. 0,3-0,7 г/см3. Обоими методами пленки П. можно получать на пов-стях разл. материалов, нанося на них тонкие слои р-ра катализатора, над к-рыми пропускают ацетилен. Первый метод предложен Ш. Ширакавой с сотрудниками в 1971, второй-Jl. Латинжером в 1960.

3) Двустадийный метод, предложенный Дж. Эдуардсом и В. Фестом из г. Дарем (Durham, Великобритания; неправильная транскрипция - Дурхем) в 1980. Вначале получают форполимер полимеризацией 6,8-бис-(трифторметил)три-цикло[4.2.2.0]дека-7,9-триена в присут. WCl6-(CH3)4Sn в хлорбензоле. Из форполимера поливом формуют пленки, к-рые подвергают нагреванию; при 40-1000C от форполимера отщепляется 1,2-бис-(трифторметил)бензол и образуется П. Пленки П. имеют низкую кристалличность, не-фибриллярную морфологию; плотн. 1,05 г/см3.

Все три метода были многократно модифицированы, однако в литературе П., полученные этими методами, принято наз. ширакавским, латинжеровским и дурхемовским.

П. можно применять для создания источников тока и ионных конденсаторов, работающих на принципе электрохим. допирования, как фотопреобразователи и солнечные батареи, заменители цветных металлов. Однако из-за трудностей переработки и в связи с изменением св-в со временем П. пока не нашли широкого практич. применения. Создание перерабатываемых П. связано в осн. с получением привитых и блоксополимеров П. и композиций П. с насыщ. полимерами.

Впервые П. был получен Дж. Наттой в 1957.


Возврат к списку

Наши публикации в соцсетях: